PROJECT TIMELINE | | | | | | _ | | | | | | | | 1 | | | | $\overline{}$ | | | | | | _ | | | R1 = Re: |--|-------|-----------------|-------------|---------|---------|-----------|-----------------------|------------|---------|------------|-------------|---|------|--|-----------------|---------------------|---------------|----------|--|----------------|--|-------------------|------------------|---------------------|--|--|--|--|--
--|--|--|---|--|--|--------------------|-------------------|---------------------|------------------------|----------|--
--|--|--|--|--|--------------------------------|--|----------------------|---------------------------|--|--|---------------------| | | 2 | | UARY | 20 | | FEBR | | | | MAR | | | 2 | | APRIL | 24 | | 4 | | MAY | 22 | 20 | | _ | JUNE | | | 2 | JUI | | 24 | ٠. | _ | JGUST | _ | _ | | | TEMBE | _ | | | ОСТОВ | _ | 20 | | | EMBER | | - | | CEMBER | • | | 1st Monday of every week | 2 | 9 | 16 23 | 30 | 6 | 13 2 | 0 27 | 0 | ь | 13 20 | 2/ | U | 3 | 10 | 1/ | 24 | 0 | 1 | 8 | 15 | 22 | 29 | 5 | 12 | 19 | SWPC | Pa · Pro | vide (a) | list of hi | storic e | ents to | validate | | 21 | 28 | 0 | 4 | 11 | 18 2 | 25 0 | 2 | 9 | 16 | 23 | 30 | 6 | 13 | 20 2 | ., 0 | 4 | 11 | 18 | 25 | | 2017 | (CME s | tart tim | ne) (b) n | nodel CN
st availal
2: Provid
for a sel | 1E parar | neter ir | puts for | all | events | . Prelim | ninary li | st availal | ble in m | id-July. | (Doug) | | | | | | _ | | | | | | | | | | | | | | | _ | SWPC R | tor a col | de detai | led inpi | its and | 0 | operatio | onal WS/ | A-Enlil re | uns fro | n the ev | ent | ist (incl | uding all | model : | etting | , WSA ir | put | į | file, mai |
gnetogra
rameters | am input | t file inf | ormatio | n, and | 9 | SWPC R | 2: Provid | de detai | led inpi | ıts for all | a | availabl | e operat | ional W | SA-Enli | runs fro | m | event III
input fil | st (includ
e, magne | ling all n
etooran | noaels
innut | ettings, v
ile | VSA | i | nforma | tion, and | d CME p | aramet | ers). Dou | ıg | eplicate | L | Leila, Pe | eter | WPC | simula | tions, ir | ncludin | ig all ne | 1 | CCMC (S | WPCR | t2): Pro | ovide te | est runs | with dif | fferent | grid resi | olutions | s, test | | | | | | | | | | | oose events; choose | replicati
ambient | on. Dis
settino | cuss a
as to b | esirea į
ie used | gria resi
I for CCN | IC R1 & | R2. Lei | ila, Pete | n, and n
er | nodei | | | | | | | | | | | del settings; choose
netrics; establish | SWPC R | 2: Evalı | uate a | ny test | runs. D | iscuss a | nd deci | ide desir | red grid | | | | | | | | | | | | nchmarks; GONG- | grid out | er boun | ndary, | time re | esolutio | n, magn | netogra | m input | t freque | ncy, mo | odel | | | | | | | | | | SA-Enlil runs and | - 1 | informat | , moue
tion to | be use | ent set
d for C | CMC R1 | & R2. S | SWPC v | ks, and o | otner re
uate wh | nether lo | low- | | | | | | | | | | validation | equent | SWPC R | a: Pren | are an | evalua | ation of | the real | uired re | solution | n for mo | del run | ns. Vic | _ | | | | | | | | | | _ | PC R1: F | Met | trics ma | v he rev | ised as | nee | ded Th | hese me | etrics wi | rill be | J 6 4h | | 45 | ate a fee | use | eded. The
d for the
items b | e valida
elow. | tion tas | sks in | | | | | | | | | | | | | + | use | d for the | e valida
elow. | tion tas | sks in | | R1: Crea | use | d for the | e valida
selow. | ition tas | sks in | WSA-E | | | single G | | gnetogr | | tablisl | | | | JAN | UARY | | | FEBR | JARY | | | MAR | СН | | | A | APRIL | | | | | MAY | | | | | JUNE | | | | JUI | LY | | | AL | JGUST | | | | SEPT | rember | ? | use
the | items b | e valida
pelow.
OCTOB | | sks in | WSA-E | Enlil drive
perform | en by a :
iance be | single G | ONG ma
ks. (con | gnetogr
tinues in | | tablisl | | | 1 | | | 29 | 5 | FEBR | | 0 | 5 | | | 0 | 2 | | | | 30 | 1 | | | | 28 | 4 | | | | 0 | 2 | | | 30 | 6 | | | | 0 | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | | 9 | 16 | 23 | | | 7 | 14 | 21 | | | 11 | 18 | 25 | | | 9 1 | 6 23 | | | 13 | 20 | 27 | 0 | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | 2018 | | 8 | 15 22 | | | | 9 26 | | | | | | ссмс | 9 | 16
ate an | 23
on-line | | | 7 | 14 | 21 | | | 11 | 18 | 25 | | | | 6 23 | | | 13 | 20 | 27 | 0 | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat | 14
tions us | 21
Ising G | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single | GONG | magnet | 9 10 | 6 23
to estab | lish mo | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | GONG | magnet | 9 1 | 6 23
o estab | lish mo | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | GONG | magnet | 9 10 | 6 23
o estab | lish mo | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | GONG
time-de
ed from | magnet
epender
2017) | 9 10 togram togr | o estab | lish mo
togram | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablisl | | DAPT-WSA-Enlil
ns and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de | magnet
epender
2017)
SWPC (Gevent for | 9 10 togram togram togram togram t GONG | magne | togram | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil
is and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de | magnet
epender
2017)
SWPC (Gevent for
provide
ADAPT | togram to | magne
(c): Choose
R3. Discorr GONG | togram
se one
cuss and | del perfo | 13
rmance | 20
bench | 27
marks. | | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de | magnet
epender
2017)
SWPC ((event for
provide
ADAPT
CCMC R | togram to | magne
(a): Choose
R3. Discorr GONG
be used | togram
se one
cuss and | del perfo | 13
rmance
sults wi | bench | amarks. | to | | | | | the | items b | oelow. | ER
| | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de | magnet
epender
2017)
SWPC ((event for
provide
ADAPT
CCMC R | togram to | magne
(a): Choose
R3. Discorr GONG
be used | togram
se one
cuss and | del perfo | 13
rmance
sults wi | bench | amarks. | to | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil
ns and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-deed from | magnet
epender
2017)
SWPC (Gevent for
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT- | togram to | magnet (a): Choose (b): Choose (constant) (constant) (do not constant) const | togram
se one
cuss and
in
liminar
realiza | del perfo | rmance
sults will
epender
one evalued fro | t bench | marks. | to A- | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de
ed from | magnet
epender
2017)
SWPC (Gevent for
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT- | togram to | magnet (a): Choose (b): Choose (constant) (constant) (do not constant) const | togram
se one
cuss and
in
liminar
realiza | del perfo
s. The re
y time-d
tions for
ll be obta
een imp | rmance
sults wil | t bench | marks. Impared IPT-WS/ ecessary ject mai | A-
/
tter | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis
R | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl | 14 ions us | 21
using Go | ONG-V | WSA-E | 11
Inlil driv | 18
ven by | 25
a single
ven by 1 | time-de
ed from | magnet
epender
2017)
SWPC (Gevent for
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT- | togram to | magnet (a): Choose (b): Choose (constant) (constant) (do not constant) const | togram
se one
cuss and
in
liminar
realiza | y time-di
tions for
ll be obta
been imp | rmance sults wil | t bench | marks. | A-
/
tter | | | | | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil
ns and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl
-WSA-E | form v | 21
osing Go
ralidations from | on of G | GONG-
A resp | 11 Inlii driv | 18
ven by
Enlil dri
ity 1. (c | 25
a single
ven by t
ontinue | time-deed from | magnet
epender
2017)
SWPC ((
event fo
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT-
experts | 9 10 togram t togram t togram t transport tran | magnetal): Choose R3. Discorr GONo be used ma prefor all 12 odel out ,, o has n | togram
se one
cuss and
selin
liminar
t realiza
puts wi
ot yet l | y time-do
tions for
ll be obta
seen imp
Joint F
due Se | epender
one evalued from the control of | e bench | marks. mpared pr-ws/ ecessary ject marches CMC. erim rep | A.
/
tter | 3 | 10 | 17 2 | 24 0 | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil
ns and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl
WSA-E | 14 form v. | 21 validations from | on of G | GONG-
A respi | 11 WSA-E Onsibili | 18 en by Enlii dri ty 1. (c | 25
a single
ven by 1
ontinue | time-de
ed from | magnet
ependen
2017)
SWPC ((
event fo
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT-
experts | togram to | magnetal): Choose R3. Discorr GONo be used ma prefor all 12 odel out ,, o has n | togram
se one
cuss and
selin
liminar
t realiza
puts wi
ot yet l | y time-do
tions for
ll be obta
seen imp
Joint F
due Se | epender
one evalued from the control of | e bench | marks. mpared pr-ws/ ecessary ject marches CMC. erim rep | A.
/
tter | 3 | 10 | 17 2 | 24 0 | the | items b | oelow. | ER | | WSA-E
model | Enlil drive
perform
NOVI | en by a :
iance be
EMBER | single G(
nchmarl | ONG ma
ks. (con | gnetogr
tinues in
DE(| ram to es
nto 2018)
CEMBER | tablis! | | DAPT-WSA-Enlil | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl
WSA-E | 14 form v. | 21 validations from | on of G | GONG-
A respi | 11 WSA-E Onsibili | 18 en by Enlii dri ty 1. (c | 25
a single
ven by 1
ontinue | time-deed from | magnet
ependen
2017)
SWPC ((
event fo
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT-
experts | 9 10 togram t togram t togram t transport tran | magnetal): Choose R3. Discorr GONo be used ma prefor all 12 odel out ,, o has n | togram
se one
cuss and
selin
liminar
t realiza
puts wi
ot yet l | y time-do
tions for
ll be obta
seen imp
Joint F
due Se | epender
one evalued from the control of | e bench | marks. mpared pr-ws/ ecessary ject marches CMC. erim rep | A.
/
tter | 3 | 10 | 17 2 | 24 0 | the the | (| OCTOB
15 | 22 | 29 | WSA-6-Model | Enlil drive perform NOVI | en by a lance be mance manced by mance be manced by mance be manced by mance be manced by mance | isingle G() | ONG ma
ks. (cont | DEC 10 | am to es tto 2018) CEMBER 17 | tablisl
2
224 | | ADAPT-WSA-Enlil
ons and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl
WSA-E | 14 form v. | 21 validations from | on of G | GONG-
A respi | 11 WSA-E Onsibili | 18 en by Enlii dri ty 1. (c | 25
a single
ven by 1
ontinue | time-de
ed from | magnet
ependen
2017)
SWPC ((
event fo
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT-
experts | 9 10 togram t togram t trace GONG CCMC R3 or CCMC I source fi maps to 3-R5 3: Perfor ulation t WSA 4 | magnetal): Choose R3. Discorr GONo be used ma prefor all 12 odel out ,, o has n | togram
se one
cuss and
selin
liminar
t realiza
puts wi
ot yet l | y time-do
tions for
ll be obta
seen imp
Joint F
due Se | epender
one evalued from the control of | e bench | marks. mpared pr-ws/ ecessary ject marches CMC. erim rep | A.
/
tter | 3 | 10 | 17 2 | 24 0 | the the control of th | (Called State of the Called Calle | OCTOB 15 | 22 validat | 29 | WSA-6 model | NOVI 12 | en by a la ance be seen ance be seen by a la ance be seen ance see | n by tim | ONG ma | gnetogrimues in DEC | am to esto 2020 | ps (on A-Enlii | | DAPT-WSA-Enlil
ns and validation; | | 8 | 15 22 | | | 12 1 | 9 26 | | | | | | ссмс | 9
R1: Cre | 16
ate an | 23
on-line | databa | ase of s | 7
simulat
R2: Perl
WSA-E | 14 form v. | 21
validations from | on of G | GONG-
A respi | 11 WSA-E Onsibili | 18 en by Enlii dri ty 1. (c | 25
a single
ven by 1
ontinue | time-de
ed from | magnet
ependen
2017)
SWPC ((
event fo
provide
ADAPT
CCMC R
CCMC R
Enlil sim
ADAPT-
experts | 9 10 togram t togram t trace GONG CCMC R3 or CCMC I source fi maps to 3-R5 3: Perfor ulation t WSA 4 | magnetal): Choose R3. Discorr GONo be used ma prefor all 12 odel out ,, o has n | togram
se one
cuss and
selin
liminar
t realiza
puts wi
ot yet l | y time-do
tions for
ll be obta
seen imp
Joint F
due Se | epender
one evalued from the control of | e bench | marks. mpared pr-ws/ ecessary ject marches CMC. erim rep | A.
/
tter | 3 | 10 | 17 2 | 24 0 | the the control of th | (Called State of the Called Calle | OCTOB 15 | 22 validat | 29 | WSA-6 model | NOVI 12 | en by a la ance be seen ance be seen by a la ance be seen ance see | n by tim | ONG ma | gnetogrimues in DEC | am to esto 2020 | ps (on A-Enlii | | DAPT-WSA-Enlil | ссмс | 8 Install E | JUARY | + upgra | des and | successfu | y achiev | e 2.6 repl | ication | 12 19 MAR | 26 CH | | CCMC | 9 Para Cree | 16 om 201 | 23
on-line
7) | c databa | CCMC R | R2: Pert | form vi | 21
validations from
 on of 6 | GONG-A respi | -WSA-Enl | Enlil dri | as single ven by the solution of | GONG titime-de from G E F F A C C A A A A A A A A A A | magnet pender 2017) SWPC ((percent for provide ADAPT CCMC R | 9 11 togram t totogram t t t t t t t t t t t t t t t t t t | magnet (): Choose of the choos | togram
se one
cuss and
in
liminar
realiza
puts wi | y time-doller titions for ill be obtateen imp | rmance epender one even intel friction lemente reprint reprint Authority Authorit | 20 If be contained the contain | mmarks. mpared mpared mpared cecessary, ject ma cMC. erim rep | A/tter | ngle A | DAPT I | maps. 1 | 24 0 | CCI seq run real | (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Perform or each esponsis (cortois octoors) | 22 22 22 22 22 22 22 22 22 22 22 22 22 | tion of /i
12 realiz
R1, R2, R2, R1 | WSA-B model 5 ADAPT- zations) and R4 | WSA-En 12 | en by a a ance be EMBER 19 2 2 | n by tim | NONG ma
ks. (continue) | gnetographic per de de la companya d | am to es and to establish establi | ps (on A-Enliid | | DAPT-WSA-Enlil | ссмс | 8 Install E | JUARY | + upgra | des and | successfu | y achiev | e 2.6 repl | ication | 12 19 MAR | 26 CH | | CCMC | 9 Para Cree | 16 om 201 | 23
on-line
7) | c databa | CCMC R | R2: Pert | form vi | 21
validations from | on of 6 | GONG-A respi | -WSA-Enl | Enlil dri | as single ven by the solution of | GONG titime-de from G E F F A C C A A A A A A A A A A | magnet pender 2017) SWPC ((percent for provide ADAPT CCMC R | 9 11 togram t totogram t t t t t t t t t t t t t t t t t t | magnet (): Choose of the choos | togram
se one
cuss and
in
liminar
realiza
puts wi | y time-doller titions for ill be obtateen imp | rmance epender one even intel friction lemente reprint reprint Authority Authorit | 20 If be contained the contain | mmarks. mpared mpared mpared cecessary, ject ma cMC. erim rep | A/tter | ngle A | DAPT I | maps. 1 | 24 0 | CCI seq run real | (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Perform or each esponsis (cortois octoors) | 22 22 22 22 22 22 22 22 22 22 22 22 22 | tion of /i
12 realiz
R1, R2, R2, R1 | WSA-B model 5 ADAPT- zations) and R4 | WSA-En 12 | en by a a ance be EMBER 19 2 2 | n by tim | NONG ma
ks. (continue) | gnetographic per de de la companya d | am to es and to establish establi | ps (on A-Enliid | | DAPT-WSA-Enill s and validation; interim report | CCMC: | JAN 14 R&: Perf | JUARY 21 28 | + upgra | des and | successfu | y achiev JJARY 8 25 | e 2.6 repl | ication | MAR 111 18 | 26 CH CH 25 | 0 | CCMC | Rate Creen mused from mused from Market Rate Creen mused from Market Rate Rate Rate Rate Rate Rate Rate Ra | 16
norm 201; | 23
on-line
7) | databa | CCMC R | 7 R2: Perl R2: Perl R3: Perl R4: Perl R4: Perl | form v. | 21 ssing Go ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati | on of C
n NAS. | GONG-ADAPT | -WSA-Enl | Enlii drity 1. (c | 25 a single ven by to ontinue | GONG | magnet pender 2017) SWPC ((percent for provide ADAPT CCMC R | 9 11 togram t totogram t t t t t t t t t t t t t t t t t t | magnet (): Choose of the choos | togram
se one
cuss and
in
liminar
realiza
puts wi | y time-doller titions for ill be obtateen imp | rmance epender one even intel friction lemente reprint reprint Authority Authorit | 20 If be contained the contain | mmarks. mpared mpared mpared cecessary, ject ma cMC. erim rep | A/tter | ngle A | DAPT I | maps. 1 | 24 0 | CCI seq run real | (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Perform or each esponsis (cortois octoors) | 22 22 22 22 22 22 22 22 22 22 22 22 22 | tion of /i
12 realiz
R1, R2, R2, R1 | WSA-B model 5 ADAPT- zations) and R4 | WSA-En 12 | en by a a ance be EMBER 19 2 2 | n by tim | NONG ma
ks. (continue) | gnetographic per de de la companya d | am to es and to establish establi | ps (on A-Enliid | | APT-WSA-Enlil
s and validation; | CCMC: | JAN 14 R&: Perf | UARY 21 28 | + upgra | des and | successfu | y achiev JJARY 8 25 | e 2.6 repl | ication | MAR 111 18 | 26 CH CH 25 | 0 | CCMC | Rate Creen mused from mused from Market Rate Creen mused from Market Rate Rate Rate Rate Rate Rate Rate Ra | 16
norm 201; | 23
on-line
7) | databa | CCMC R | 7 R2: Perl R2: Perl R3: Perl R4: Perl R4: Perl | form v. | 21 ssing Go ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati | on of C
n NAS. | GONG-ADAPT | -WSA-Enl | Enlii drity 1. (c | 25 a single ven by to ontinue | GONG | magnet pender 2017) SWPC ((percent for provide ADAPT CCMC R | 9 11 togram t totogram t t t t t t t t t t t t t t t t t t | magnet (): Choose of the choos | togram
se one
cuss and
in
liminar
realiza
puts wi | y time-doller titions for ill be obtateen imp | rmance epender one even intel friction lemente reprint reprint Authority Authorit | 20 If be contained the contain | mmarks. mpared mpared mpared cecessary, ject ma cMC. erim rep | A/tter | ngle A | DAPT I | maps. 1 | 24 0 | CCI seq run real | (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Perform or each esponsis (cortois octoors) | 22 22 22 22 22 22 22 22 22 22 22 22 22 | tion of /in realizable Ray | WSA-B model 5 ADAPT- zations) and R4 | WSA-En 12 | en by a a ance be EMBER 19 2 2 | n by tim | NONG ma
ks. (continue) | gnetographic per de de la companya d | am to es and to establish establi | ps (on A-Enliid | | OAPT-WSA-Enill ss and validation; interim report | CCMC: | JAN 14 R&: Perf | JUARY 21 28 | + upgra | des and | successfu | y achiev JJARY 8 25 | e 2.6 repl | ication | MAR 111 18 | 26 CH CH 25 | 0 | CCMC | Rate Creen mused from mused from Market Rate Creen mused from Market Rate Rate Rate Rate Rate Rate Rate Ra | 16
norm 201; | 23
on-line
7) | databa | CCMC R | 7 R2: Perl R2: Perl R3: Perl R4: Perl R4: Perl | form v. | 21 ssing Go ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati ralidati | on of C
n NAS. | GONG-ADAPT | -WSA-Enl | Enlii drity 1. (c | 25 a single ven by to ontinue | GONG | magnet spender 2017) SWPC ((EVENTE FOR TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN | 9 11 togram t totogram t t t t t t t t t t t t t t t t t t | magnet ma | togram se one cuss and se. in liminar realize oot yet | y time-di
tions for
Joint R
Joint R
Higher) | 13 rmance epender one eve nined friction lemente ta: prep up 15t driven b | 20 If be contained the contain | mmarks. mpared mpared mpared cecessary, ject ma cMC. erim rep | A/tter | ngle A | DAPT I | maps. 1 | 24 0 | CCI seq run real | (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Perform or each esponsis (cortois octoors) | 22 22 22 22 22 22 22 22 22 22 22 22 22 | tion of /in realizable Ray | WSA-B model 5 ADAPT- zations) and R4 | WSA-En 12 | en by a a ance be EMBER 19 2 2 | n by tim | NONG ma
ks. (continue) | gnetographic per de de la companya d | am to es and to establish establi | ps (on A-Enliid |